Skip to content

>Desvendando o que Darwin não sabia (e nem poderia)

>
ResearchBlogging.orgEste ano está sendo especial para pessoas interessadas em evolução, pois é o aniversário de 150 anos da publicação do livro “A Origem das Espécies” de Charles Darwin. Na sua extensa obra-prima, Darwin discute o mecanismo de seleção natural como força motriz da evolução. O que Darwin não sabia e nem poderia saber naquela época é como as populações divergem para dar origem a novas espécies, particularmente como tal processo ocorre a nível molecular. O laboratório da pesquisadora Hopi Hoekstra (Universidade de Harvard) acaba de publicar um estudo buscando responder essa questão.

Nos últimos anos, cientistas da área de Biologia Evolutiva do Desenvolvimento têm se dedicado a entender os mecanismos moleculares responsáveis por adaptações a um determinado ambiente. Estas mudanças a nível de DNA (genótipo) são responsáveis por mudanças no organismo que podem ser observadas (fenótipo).

Existem dois grandes problemas para identificar mudanças no DNA responsáveis por adaptações. O primeiro deles é encontrar características que sejam sem dúvida alguma adaptativas, isto é, características que sejam visivelmente distintas entre indivíduos da mesma espécie e que confiram vantagem(s) a um determinado indivíduo (ou grupo) em relação a outro num determinado ambiente. Este primeiro problema foi facilmente resolvido no presente estudo, pois Hoekstra e colaboradores utilizaram camundongos que possuiam pêlos de cores claros e escuros e que viviam em montanhas com areias brancas e escuras, respectivamente (Foto). Sabe-se há muitos anos que camundongos de pele clara, quando colocados em áreas escuras são mais visíveis a predadores como corujas. O mesmo acontece com camundongos escuros quando colocados em montanhas claras. Um dos principais achados do artigo é que os camundongos claros e escuros são diferentes devido à produção de dois pigmentos. Camundongos de pêlo claro têm seus melanócitos (células produtoras de pigmento) produzindo a substância clara feo-melanina, enquanto camundongos de pêlo escuro produzem a substância escura eumelanina. Esta distinção faz com que camundongos de pêlo claro consigam refletir muito mais a luz que camundongos de pêlo escuro e tem caráter adaptativo.

O segundo problema é mais difícil de ser resolvido. Este problema é o de identificar quais mudanças no genoma dos camundongos (DNA) são responsáveis pelas mudanças na cor do pêlo ao longo da evolução. Achar essas diferenças no DNA sem nenhuma pista seria como achar uma agulha num palheiro. Hoekstra e colaboradores então se utilizaram de uma pista. Eles sabiam que um gene chamado Agouti está envolvido, em camundongos de laboratório, na regulação da produção de feomelanina, logo este gene seria um candidato natural para explicar a variação. Usando várias técnicas genéticas e moleculares foi determinado que, de fato, mudanças na regulação (quantidade) do gene Agouti estão envolvidas na diferença da cor do pêlo claro e escuro. Além disso, foi encontrada uma deleção (perda) de um aminoácido na população de camundongos com pêlo claro se comparado com camundongos de pêlo escuro, sugerindo que uma mudança na região que dá origem à proteína (codificante) também ocorreu. Como os próprios autores reconhecem, não está claro qual a contribuição de cada uma destas modificações, codificante ou não-codificante, para a mudança da cor do pêlo nestas populações. Esta questão deverá ser abordada em estudos futuros.

Para finalizar, os pesquisadores demonstram através de testes clássicos de genética de população que as mudanças no DNA encontradas nos camundongos claros atuais ocorreram depois da formação das montanhas de areia branca, que ocorreu há 10.000 anos. Estes resultados vão contra recentes estudos que propõem que caracteres adaptativos são selecionados a partir da variação genética já existente em populações. Mas essa discussão eu deixo pra outro post….O importante aqui é dizer que foi descoberto algo que Darwin não sabia (e nem poderia)…

Linnen CR, Kingsley EP, Jensen JD, & Hoekstra HE (2009). On the origin and spread of an adaptive allele in deer mice. Science (New York, N.Y.), 325 (5944), 1095-8 PMID: 19713521

>Entrevista: José Garcia Abreu

>
Caros leitores,
Estamos dando início a uma série de entrevistas com pesquisadores brasileiros
na área de Biologia do Desenvolvimento/Evo-Devo. É com grande prazer que temos como primeiro convidado o Professor José Garcia Abreu, chefe do Laboratório de Embriologia dos Vertebrados do Instituto de Ciências Biomédicas/UFRJ.

1. O que o levou a realizar uma carreira em Biologia do Desenvolvimento/Evo-Devo?

Dois fatores foram determinantes para esta escolha: 1) eu ter feito um curso da cátedra UNESCO em BD, cujo o tema era modelos de estudo em BD. Isso ocorreu em 1998 quando terminava meu doutorado. Nessa ocasião fiquei particularmente interessado em Xenopus, tive meu primeiro contato com os embriões e aprendi dissecar o ectoderma animal. Outro fator importante foi o fato de ter feito meu doutorado em Neurobiologia do desenvolvimento e durante este período lendo artigos me interessei por desenvolvimento mais precoce (blástula e gástrula).

2. Na sua opinião, qual foi trabalho científico mais importante na Biologia do Desenvolvimento/Evo-Devo?

É muito difícil responder esta questão, mas sem dúvida destaco os que foram contemplados com o Nobel, Spemann e Magold, 1924 e Nusslein-Volhard e Wieschaus,1980. As descobertas destes trabalhos foram seminais e ainda hoje são matéria base a qualquer nova descoberta. Outros trabalhos foram também importantes.

3. Quais as vantagens e desvantagens de se fazer Biologia do Desenvolvimento no Brasil?

A principal vantagem e que como ainda é um campo novo pode atrair novos talentos e como é multidisciplinar permite interações com diversos grupos locais que investigam outras temáticas. Por outro lado, é muito dificil estabelecer modelos novos como anfibios (Xenopus) e camundongo. O primeiro pelos entravés de importação e o segundo pelo custo e dificuldade de manutenção em condições adequadas.

4. Quais são as perguntas que você gostaria de responder em seu futuro científico ?

Muitas, mas se conseguisse contribuir para entender o que define posicionamento e destino a uma célula embrionária já ficaria satisfeito.

5. Quem mais o influenciou na sua carreira científica?

Muitos professores foram importantes no delineamento de minha careira e nesta entrevista não haveria espaço pra tantos nomes, mas no Brasil destacaria dois pesquisadores que conheci durante minha formação inicial e tenho relacionamento ate hoje, Vivaldo Moura Neto e Leny Cavalcante. Eles sabem dizer aquilo que você precisa ouvir. Através deles conheci muitos outros no Rio e pelo mundo. Fora do Brasil, o Professor Eddy De Robertis também me influenciou muito. Atualmente estou convivendo com o professor Xi He que é um cientista muito intenso, com uma cabeça genial e que aos 47 anos já é full professor em Harvard Medical School e é um dos líderes mundiais na sua area, Wnt no desenvolvimento e na doença.

6. Que outra profissão voce teria escolhido que nao a carreira científica?

Não sei mas seria algo relacionado à descoberta ou à busca de algo.

Em nosso nome, obrigado e muito sucesso Garcia.

>Dentes de crocodilo, bico de galinha

>ResearchBlogging.orgHá aproximadamente 300 milhões de anos, o ancestral de todos os vertebrados modernos deu origem às linhagens dos mamíferos e dos répteis e aves. Répteis, possuem dentes em forma de cone, assim como dinossauros ancestrais de aves. Entretanto, aves modernas, que surgiram 80 milhões de anos atrás, não possuem dentes.

Dentes, assim como membros e outros apêndices presentes no ancestral de vertebrados modernos, foram modificados ou mesmo perdidos de forma independente diversas vezes ao longo da evolução. Nos casos de caracteres perdidos, uma pergunta intrigante do ponto de vista da biologia evolutiva e de desenvolvimento é o quanto do programa de desenvolvimento ainda se faz presentes em espécies que perderam um determinado caractere? No caso das aves, a pergunta é: quanto do programa genético para formação de dentes ainda está presente? É possível reativar este programa e promover formação de dentes em aves modernas? Que dentes estas aves formariam?

E foi a resposta para estas três perguntas que Matthew Harris, aluno de doutorado no laboratório de John Fallon, e colaboradores na Universidade de Wisconsin, encontraram em 2006. Os resultados deste fantástico estudo com o mutante talpid foram publicados na revista Current Biology. Resumindo, Harris e colaboradores, estudando o mutante talpid (provavelmente devido às alterações na formação de membros – foco deste laboratório) observaram que estes também possuiam alterações na formação do bico. Análise cuidadosa revelou a formação de proeminências no limite lateral da cavidade oral, que histologicamente se assemelhavam a dentes de crocodilos.

Os pesquisadores compararam o desenvolvimento de dentes em crocodilos e na galinha mutante, estudando genes envolvidos com a formação de dentes como shh, ptc (o receptor a proteína Shh), pitx2, e bmp4. O que descobriram foi uma incrível semelhança espaço-temporal na expressão destes genes entre crocodilos e galinhas mutantes. Vale notar que os genes pitx2 e bmp4 sequer são expressos na cavidade oral em aves.

Por fim, os autores mostraram que as alterações na cavidade oral em galinhas mutantes resultaram no reposicionamento do epitélio com potencial sinalizador, colocando-o em contato com o mesênquima competente para produção de dentes. Os tecidos são normalmente separados durante a formação do bico em aves e os autores especulam que a perda dos dentes é resultado da separação do epitélio e o mesênquima competentes para formação de dentes. Nas aves mutantes, estes tecidos são postos em contato novamente e, conseqüentemente, formam-se dentes!

Este estudo representa mais um exemplo no qual uma estrutura é modificada não pela perda ou invenção de novos genes, mas pela utilização (ou não) destes. Por fim, este trabalho indica que algumas vias de desenvolvimento desativadas há muito tempo (neste caso, há 80 milhões de anos) podem ser reativadas.

Harris MP, Hasso SM, Ferguson MW, & Fallon JF (2006). The development of archosaurian first-generation teeth in a chicken mutant. Current biology : CB, 16 (4), 371-7 PMID: 16488870

>Uma aranha com dois pares de patas ?

>
ResearchBlogging.orgEm um estudo publicado na edição online da revista científica Current Biology desta semana (http://www.cell.com/current-biology/abstract/S0960-9822(09)01378-5) pesquisadores da Universidade de Colônia, Alemanha estudando a formação dos segmentos da aranha Achaearanea tepidariorium conseguiram um feito inédito, geraram aranhas com dois pares de patas ao invés dos quatro pares habituais através de nocaute gênico via interfêrencia de RNA (iRNA). O grupo contou com a participação da brasileira Natália Martins Feitosa aluna de doutorado da Universidade de Colônia, que trabalhou no laboratório de Wim Damen (líder do artigo) durante sua especialização na Alemanha.

Uma das principais perguntas da área de Evolução e Desenvolvimento atual é sobre a origem e a diversificação da formação dos segmentos nos diferentes grupos animais. Alguns grupos acreditam que a segmentação foi inventada diversas vezes nos diferentes grupos de animais, enquanto outros propõem uma origem única deste processo. Um dos principais problemas para resolver dessa questão é que os estudos de biologia do desenvolvimento atuais tem se concentrado em espécies pertencentes a grupos derivados filogeneticamente como as moscas-da-fruta Drosophila melanogaster e o nematódeo nao-segmentado C. elegans.

Embriões de mosca-da-fruta, por exemplo, formam todos os segmentos da cabeça ao abdômen ao mesmo tempo, pois seu desenvolvimento embrionário é muito rápido, em torno de um dia. Ao contrário, quelicerados como a aranha utilizada no estudo e vertebrados como nós humanos levam muito mais tempo para se desenvolverem e tem a formação de seus segmentos em dois processos distintos, o primeiro no início do desenvolvimento embrionário na parte mais anterior e o segundo na região posterior, a chamada zona de crescimento (“growth-zone”).

A primeira autora do estudo, atualmente realizando seu pós-doutorado em Harvard, Evelyn Schwager destaca que o artigo demonstra que dois mecanismos genéticos distintos estão envolvidos na segmentação nas regiões anterior e posterior na aranha.

O grupo de Wim Damen já havia ficado famoso alguns atrás ao publicar um artigo na revista Nature mostrando que a mesma via de sinalização, a via de Notch, é responsável pela segmentação da região posterior de aranhas. Notch é importante para a formação dos segmentos posteriores também em vertebrados como nós, mas nao é necessário para este processo em moscas-da-fruta que tem o desenvolvimento rápido e sincronizado de todos os segmentos. Em moscas-da-fruta o mecanismo envolvido na padronização de região anterior envolve vários fatores de transcrição, incluindo hunchback, cujo papel foi analisado pelo presente estudo em aranhas. No fim das contas gerar uma aranha com apenas dois pares de patas foi possível pelo presente estudo (os fascinantes filmes com aranhas selvagens e iRNA para hunchback podem ser encontrados em: http://www.cell.com/current-biology/supplemental/S0960-9822(09)01378-5).

É importante ressaltar que estas aranhas com dois pares de patas não sobrevivem muito tempo provavelmente por não serem capazes de realizarem de forma eficiente tarefas usuais como capturar insetos ou manipular a teia que produzem. No fim das contas, Darwin já mostrou há 150 anos que a selecao natural é responsável por selecionar as variantes mais aptas e não é a toa que
as aranhas possuem quatro pares de patas há muitos milhoes de anos…..

Schwager EE, Pechmann M, Feitosa NM, McGregor AP, & Damen WG (2009). hunchback functions as a segmentation gene in the spider Achaearanea tepidariorum. Current biology : CB, 19 (16), 1333-40 PMID: 19631543

>Blog agora tem dois autores!

>Caros amigos,
é com grande prazer que anuncio que o blog agora possui um novo autor/colaborador: Rodrigo Fonseca.
Rodrigo é doutor e pós-doutor em Biologia do Desenvolvimento (Embriologia) pela Universidade de Colônia, Alemanha e atualmente professor e pesquisador do Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro – Campus Macaé – atuando na área de Biologia Evolutiva do Desenvolvimento.
Eu e Rodrigo vamos dividir a tarefa de manter o blog atualizado e de divulgar as descobertas na área da Evo Devo.

>Matéria na Folha de SP de domingo (6-28-9)

>Grupo busca em fósseis e DNA origem de mãos e pés

Experimento feito por brasileiro nos EUA visa produzir membros em lampreia

Paraense de 28 anos quer saber se os genes que dão patas aos animais terrestres já estavam presentes nessa espécie primitiva de peixe

CLAUDIO ANGELO
ENVIADO ESPECIAL A CHICAGO

“Quer segurá-lo? Pode segurá-lo. Só não o deixe cair.”
O paleontólogo Neil Shubin estende um pedaço de rocha vermelha que acaba de retirar de uma caixa de acrílico forrada com espuma. Sem ousar trazê-la para muito longe da gaveta onde fica guardada, aproximo o olho da peça. E os contornos do osso ficam claros. Ali, na minha mão, está um pedaço da pata dianteira do Tiktaalik roseae, um dos vertebrados fósseis mais importantes do mundo.
O próprio ato de pegar o osso fossilizado de 375 milhões de anos é possível graças ao Tiktaalik. Afinal, esse peixe que habitou a região que hoje é o Ártico canadense foi, por assim dizer, o inventor daquilo que se transformaria nas mãos e nos pés dos seres humanos. Antes dele, tudo o que havia nos animais eram nadadeiras. O Tiktaalik roseae criou as patas.
Descrito em 2006 na capa da revista “Nature” por Shubin e seus colegas Farish Jenkins e Ted Daeschler, o fóssil sacudiu o universo da paleontologia. Tratava-se de um perfeito elo perdido: um animal que mistura características de peixe e anfíbio e que pode ajudar a explicar como os animais conquistaram a terra firme, no Período Devoniano (entre 408 milhões e 362 milhões de anos atrás).
Assim como o Tiktaalik, o laboratório de Shubin na Universidade de Chicago, nos EUA, é um híbrido estranho. Ali, fósseis, moldes de fósseis e uma imensa prancheta para desenhar ossos dividem espaço com microscópios, uma máquina de amplificação de DNA, uma centrífuga e várias outras traquitanas de biologia molecular.
As pesquisas desenvolvidas ali têm um objetivo nada modesto: “Queremos entender a origem dos vertebrados terrestres e como os organismos surgem”, diz o pesquisador. Para isso, ele seus colegas vasculham ao mesmo tempo os dois grandes conjuntos de evidências à disposição dos cientistas: os fósseis das criaturas extintas e o DNA das atuais.
A poucos metros de onde os restos mortais do Tiktaalik são mantidos trancados -por razões de segurança, depois que Shubin passou a receber ameaças por telefone de criacionistas furiosos-, um brasileiro se dedica a desvendar a parte genética dessa equação: o embriologista paraense Igor Schneider, 28, aluno de pós-doutorado de Shubin.
Schneider é um especialista em evo-devo, ou evolução do desenvolvimento. Essa área da biologia se dedica a estudar a maneira como os embriões se desenvolvem em busca de marcas registradas da evolução.
“É a área do futuro”, conta o pesquisador. “Hoje finalmente a gente tem tecnologia para responder às perguntas relevantes -como surgiram as grandes estruturas na evolução, por exemplo.”
Na semana passada, Schneider conduziu um experimento para desvendar a origem de uma dessas grandes estruturas: os chamados apêndices pareados, que resultaram nas barbatanas e nas patas. Ele foi procurá-las num lugar insuspeito: o corpo da lampreia, um peixe extremamente primitivo que não tem nadadeiras pareadas.
O cientista quer saber se o “modelo básico” dos vertebrados, do qual a lampreia é o principal representante vivo -ela consiste basicamente de um tubo com uma coluna no meio-, já possuía os genes que dão origem às barbatanas dos peixes e aos braços e às pernas dos mamíferos.
Para isso, ele injetou em embriões de lampreia uma sequência de DNA que ele isolou do paulistinha, um peixe comum de laboratório, e que, acredita, regula a ativação do gene Shh, responsável pela produção dos apêndices.
Essa sequência de DNA, conhecida como ZRS, não traz a receita para a fabricação de nenhuma proteína. Poderia ser facilmente descartada como “lixo” genômico, não fosse um detalhe intrigante: ela tem trechos virtualmente idênticos em animais separados por centenas de milhões de anos de história, como humanos e tubarões. É como se a evolução a tivesse mantido conservada de propósito, por um bom motivo.
E o motivo, acredita Schneider, é ordenar ao Shh que produza membros pareados.
“Só seríamos capazes de verificar isso procurando sinais de membros num bicho que não tem membros”, diz.

Cientistas vão ao Ártico no fim do ano buscar peixe com dedos

DO ENVIADO A CHICAGO

Ninguém sabe ainda o que acontecerá com os embriões de lampreia que receberam o DNA do peixe paulistinha. No melhor dos cenários, caso a hipótese de Igor Schneider esteja certa, a sequência reguladora do paulistinha produzirá daqui a duas semanas bichos bem bizarros -lampreias com pares de barbatanas laterais.
“Pode ser que da primeira vez não dê certo, algo raro em ciência”, ironiza (coisas dão errado o tempo todo em ciência).
Se der certo, será mais uma humilhação que os evolucionistas impõem à humanidade: saber que os mesmos genes que formam a mão humana, tida e havida como o suprassumo da Criação, já estavam presentes na lampreia, uma das criaturas mais detestáveis do planeta.
Seria também mais uma evidência de que as grandes transições evolutivas, que cientistas como Schneider e Shubin tentam entender, dependem menos de mutações nos genes que codificam proteínas e mais de sequências reguladoras – que até pouco tempo atrás eram chamadas de “DNA-lixo”.

Peixe fora d’água
Enquanto isso, Neil Shubin e Ted Daeschler planejam para o fim do ano uma nova expedição ao Ártico em busca de fósseis.
“Quero ver um peixe com dedos”, diz Shubin. Um intermediário entre o Tiktaalik e os anfíbios, que tem tudo para despertar mais fúria criacionista.
A equipe passará três meses revirando rochas de 5 milhões a 10 milhões de anos mais jovens que aquelas onde o Tiktaalik foi descoberto, mas que se formaram no mesmo ambiente: águas rasas e mornas, “como as de regiões da Amazônia de hoje”. Nesses igarapés devonianos, repletos de predadores vorazes, diz Shubin, sair da água provavelmente se tornou uma estratégia de sobrevivência. “Parece que nossos ancestrais evitaram a luta.”

>Quebrando a simetria bilateral

>Vertebrados, em geral, parecem perfeitamente simétricos em relação ao eixo esquerdo-direito. Em outras palavras, se você traçar uma linha da cabeça aos pés, dividindo o corpo em duas metades – esquerda e direita – observará que uma aparenta ser a imagem espelhada da outra.
Mas isso só é verdade por fora: por dentro impera a assimetria.

Coração deslocado para a esquerda, fígado pra direita, estômago para a esquerda, intestino para todos os lados! Sem falar em assimetrias funcionais como no cérebro.

A “quebra” da simetria bilateral é um tópico de intensa pesquisa na área de biologia do desenvolvimento e evolução, tanto pelo desafio que ela impõe à anatomia animal, quanto pela enigmática razão pela qual a assimetria em vertebrados, ao menos da forma como a conhecemos, foi selecionada durante a evolução.

Um embrião de vertebrado no estágio de nêurula já possui um corpo tubular com uma cabeça e o tubo neural em formação. Entretanto, neste estágio o embrião parece bilateralmente simétrico. É neste momento que antecede a formação dos principais sistemas de órgãos que o desenvolvimento embrionário encara uma difícil tarefa: gerar um embrião bilateralmente simétrico onde os órgão internos são assimetricamente posicionados.

Uma série de genes estão envolvidos neste processo, como Nodal, Pitx2, FGF8, Shh, para citar alguns (quem sabe assunto para futuros posts). Porém gostaria de direcionar o foco para um “órgão”, presente somente em vertebrados, que se forma no estágio de gástrula e desaparece logo que os órgão começam a assumir posicionamento assimétrico.
Em sapos, camundongos, e aves, este “órgão” é conhecido como nódulo, e em peixes como vesícula de Kupffer (ou VK: a imagem ao lado mostra as células da VK marcadas de verde, com cílios marcados de vermelho). Apesar da forma deste órgão variar de acordo com cada organismo, em todos eles existe um aspecto em comum: o nódulo (ou a VK) possui cílios que batem coordenadamente de tal forma que o líquido dentro do nódulo flui da direita para a esquerda e, de alguma maneira misteriosa, resulta na expressão de certos genes somente no lado esquerdo do embrião! Como resultado, estes genes coordenam o posicionamento assimétrico dos órgãos.

Vários experimentos elegantes mostram a importância do nódulo e seus cílios para o posicionamento assimétrico dos órgãos: quando o fluxo do fluido dentro do nódulo é artificialmente revertido, camundongos se desenvolvem com os órgãos epelhados. Doenças humanas hereditárias que afetam a formação de cílios e flagelos resultam em alterações na lateralidade dos órgãos. Quando um gel é injetado na VK de peixes de tal maneira que os cílios ficam imóveis, os órgãos internos não assumem posicionamento assimétrico, e o coração permanece como um tubo reto (como um cabo de guerra onde não há vencedor).

Ao mesmo tempo que este nódulo coordena a expressão de genes em um só lado do corpo, também promove a formação simétrica dos somitos (blocos de tecido que dão origem principalmente à musculatura do corpo). O modo pelo qual esta estrutura consegue gerar sinais assimétricos e ao mesmo tempo coordenar a formação simétrica dos somitos esta apenas começando a ser compreendido.

Mas qual a força que conduziu à evolução da assimetria dos órgãos internos? Talvez para melhor compactar os órgãos dentro do corpo? Porém a assimetria em sí resultou em outros “problemas” a serem resolvidos, como por exemplo a necessidade de um sistema complexo e extremamente assimétrico de veias e artérias, percorrendo os mais tortuosos caminhos, para irrigar estes órgãos dispostos de forma tão bizarra.

Outra questão diz respeito ao viés à esta conformação em particular. Se todos os órgãos fossem posicionados exatamente de forma espelhada em relação à conformação “normal”, o organismo funcionaria perfeitamente, como é o caso em algumas raras condições onde o paciente tem os órgãos invertidos (geralmente só se descobre tal condição na mesa de operação, quando o médico procura o coração no lado esquerdo e encontra no lado direito!).

Porque, então, possuir os órgãos em posição espelhada é tão raro?

Alguns acreditam que esta seja uma barreira imposta à evolução pela biofísica das moléculas que formam o cílio: as proteínas que compõem o cílio são “montadas” de tal maneira que o cílio roda para uma única direção para gerar o movimento de chicote. Por causa desta quiralidade intrínseca dos cílios, o fluxo dentro do nódulo é sempre da direita pra esquerda e pouco (ou nada) pôde fazer a evolução à respeito disso.

Diversos exemplos de assimetrias existem no reino animal e muitos não envolvem cílios. A evolução parece ter encontrado várias outras maneiras de gerar assimetria, como àquela presente nas conchas de moluscos, ou mesmo nos olhos do linguado, pois estes inicialmente são posicionados lateralmente e a metamorfose que gera a migração do olho é causada por ação hormonal.

Por fim, este é um assunto no qual trabalhei durante o doutoramento e por conseqüência tenho considerável interesse. Logo, assim que souber de novas descobertas, comentarei aqui no blog!

Seguir

Obtenha todo post novo entregue na sua caixa de entrada.

Junte-se a 32 outros seguidores